PPAR GAMMA REGULATES TUMOR-SPECIFIC REPRESSION OF MnSOD EXPRESSION: TOWARD TARGETED "OXIDATION THERAPY" IN ESTROGEN-INDEPENDENT BREAST CANCER

Dr. Alan Prem Kumar Nuclear Receptor and Cancer Pharmacology Cancer Science Institute of Singapore and Department of Pharmacology National University of Singapore Email: csiapk@nus.edu.sg

Breast Cancer

- Most common cancer in women worldwide, constitutes 16% of all female cancers
- About 1.3 million women will be diagnosed annually and estimated 15% death (American Cancer Society)
- Most common malignancy among Singaporean women, accounting for 29.7% of all female cancers (Jara-Lazaro et al., 2010)
- Most death are caused by metastases of breast cancer to other organs in the body; bone, lungs, liver and brain
- Poor prognosis and statistics show that the 10-year survival rate of metastatic breast cancer is only 10% with optimal treatment (Merck, 2008)
- A class of anticancer drugs: activators of PPARs (Elstner et al., 2002)

Peroxisome Proliferator- activated Receptor gamma (PPARγ) and Cancer

(Rumi et al., 2004)

- Among the three PPAR isoforms, PPARγ activation appears to play an important role in diverse physiological events
- Ligands: 15d-PGJ₂, synthetic glitazones
- Tumor breast cells express higher than normal levels of PPARγ (Elstner et. al., 1998; Zaytseva et al., 2008; Kumar et al., 2009)

(Zaytseva et al., 2008)

- Ligand activation of PPARγ has been shown to inhibit proliferation and induce apoptosis in several human tumor cell types
- Mechanism of cell death unknown

ROS in Chemotherapy

• Intricate balance of ROS required for survival (Tomaselli et al., 2010)

- Excess ROS -> cell death
- Antioxidants: e.g. SOD, catalase, glutathione, metal ion chelators
- ROS has been widely utilized in chemotherapy -> inducing cell death in cancer cells (Akram et al., 2006, Kumar et al., 2007; Ozben, 2007, Low et al., 2010)

PPARy and ROS production

	Ligand	Concen tration	Type of ROS	Probe	Suggested mechanism	Cell type	Source
1)	15d-PGJ ₂	2.5µM	H ₂ O ₂ , ONOO ⁻ , ·OH, O ₂	Carboxy- H ₂ DCFDA; MitoSOX Red	Not reported	B lymphocytes	Ray DM et al, The Journal of Immunology, 2006, 177: 5068– 5076.
2)	15d-PGJ ₂	5 – 20μΜ	H₂O₂, ONOO ⁻ , [.] OH	Carboxy- H ₂ DCFDA	NADPH activation	Leukemic cells, colorectal cancer cells	SS et al, Clin Cancer Res 2009;15(17) September 1, 2009
3)	15d-PGJ ₂ , PGD ₂ , Rosiglitazone, Ciglitazone, Troglitazone	8μΜ	H₂O₂, ONOO ⁻ , ∙OH	Carboxy- H ₂ DCFDA	Nucleophilic addition reactions with thiols	Leukemic cells	YC. Chen et al., Biochimica et Biophysica Acta 1743 (2005) 291–304
4)	Ciglitazone	10µM	H ₂ O _{2,} ONOO⁻ , [.] OH	Carboxy- H₂DCFDA	Not reported	Renal cells	C.H. Kwon et al. / Toxicology 257 (2009) 1–9
5)	Ciglitazone	20µM	H ₂ O ₂ , ONOO⁻ , [.] OH	Carboxy- H ₂ DCFDA	Mitochondrial depolarization	Glioma cells	Dong WK et al., Neurochem Res (2008) 33:551–561
7)	15d-PGJ ₂	1 – 30µМ	H₂O₂, ONOO ⁻ , [.] OH	Carboxy- H ₂ DCFDA	Disruption of mitochondrial membrane potential	Osteoblastic cells	S.J. Lee et al. / Toxicology 248 (2008) 121–129
8)	15d-PGJ ₂	1 – 10μΜ	•ОН, О ₂	Carboxy- H ₂ DCFDA, Lucigenin	Xanthine oxidase	Lymphocytes	A´ Ivarez-Maqueda M et al., The Journal of Bio Chem. Vol. 279, No. 21, Issue of May 21, pp. 21929–21937, 2004
9)	Troglitazone, Ciglitazone	10 – 100μM	H ₂ O ₂	Carboxy- H ₂ DCFDA	Inhibition of mitochondria complex I & h	Jurkat T cells	Soller M et al., Mol Pharmacol 71:1535–1544, 2007

What regulates mitochondrial superoxide levels in cells?

Manganese Superoxide Dismutase (MnSOD)

Antioxidant enzyme found in mitochondria and peroxisomes

- Prime importance in maintaining cellular ROS balance
- ROS stress seems to render cancer cells more dependent on SODs to protect themselves (Huang et al., 2000)
- MnSOD KO mice die just after birth (Lebovit et al., 1996)
- Down-regulation of MnSOD in breast cancer cells lead to activation of mitochondrial-driven apoptotic processes (Murias et al., 2008)
- Mouse MnSOD is a PPARγ target gene (Ding et al., 2007)

Is human MnSOD a target gene of PPARγ?

medscape.com

Putative PPRE sites in Human MnSOD Promoter

PPRE1 TGCAGAGGACATCCTGAGCTGGCTGGAGTAACTTGGGGACACAGGTCAAT -2742PPRE2 ACTTGAGGTCAGGCGTTCGAGACCATCCTGACCAACATAGTGAAACCCCGT // //-1673 PPRE3 // -713 TCCTGTCCTGGAAT<mark>AGGTCCCAAGGTCG</mark>GCTTACTTGCAAAGCAAGGGTACGGCGCAAGA -653 GTACTGAATACGGGTTGGAAGGGCGCTGGCTCTACCCTCAGCTCATAGGCCGGCTGGGCG -593 GCGCTGACCAGCAGCTAGGCCCCGTCTTCCCTAGGAACGGCCACGGGGGCCCTGGGAGGG -533 TATGAATGTCTTTTTGCAGTGAGGCCTCTGGACCCCGCGCCCCCCGGCAGCGCAACCAA -473 AACTCAGGGGCAGGCGCCGCAGCCGCCTAGTGCAGCCAGATCCCCGCCGGCACCCTCAGG -413 GGCGGAGCCGGAGGCAGGGCCTTCGGGCCGTACCAACTCCACGGGGGCAGGGGCCGCCTC -353 -293 -233 GCGGGACAGGCACGCAGGGCACCCCCGGGGTTGGGCGCGGGGCGCGGGGCGGGGCCCCG -173 $cccgcgctttcttaaggcccgcgggcgcgcagagcgcactcgt \mathbf{G}_{gctgtggtggctt}$ -113 CGGCAGCGGCTTCAGCAGATCGGCGGCATCAGCGGTAGCACCAGCACTAGCAGC -53

Sequence ID: NCBI-GI: <u>67782305</u> NCBI-GeneID: <u>6648</u> Ensembl: <u>ENSG00000112096</u>

В

Α

				, 🗸 PPRE1
Target genes/consensus	Binding efficiency	Sequence	Strand	PPRE3
name	invivo/invitro			
Human MnSOD				
Strong PPARgamma	0.42/0.49	GGGACACAGGTCA	+	
Strong PPARgamma	-/0.89	AGGTCCCAAGGTCG	+	

From PPRESearch: http://www.cellfate.org/PPRE

Gireedhar V; Kumar AP; Loo SY; Pervaiz S; Clement MV; and Sakharkar MK (2009) Computational identification and experimental validation of PPRE motifs in NHE1 and MnSOD genes of Human. BMC Genomics. 10(Suppl 3):S5.

(Gireedhar V et al., 2009)

MnSOD is a target gene of PPARy and PPRE3 is the bona fide binding site.

What is the effect of PPARγ activation on MnSOD levels?

PPARy activation in vitro

PPARy activation in vivo

PPARγ activation down-regulates MnSOD expression in vitro and in vivo.

Human MnSOD is down-regulated by PPARγ activation

Is this effect PPARγ-dependent? → GW9662 → DN PPARγ

1) PPARy inhibitor: GW9662

2) Transfection of dominant negative PPARy

Down-regulation of MnSOD expression is PPARγ-dependent.

- Human MnSOD is down-regulated by PPARγ activation
- 2) PPARγ-dependent

How does PPARγ activation affect intracellular ROS levels?

PPARy-induced ROS Production

- Human MnSOD is down-regulated by PPARγ activation
- 2) PPAR γ -dependent
- 3) Increase 0_2^{-1} levels

Do synthetic glitazones have the same effect?

PPARy Activation by Synthetic Glitazones

Cohort Study of Breast Cancer Patients

Group	Diabetes	Treatment for diabetes
I	Yes	Glitazones
II	Yes	Other anti- diabetics
III	No	NA

Effect of Glitazone Treatment in Breast Cancer Patients

D

	MnSOD (IHC)	Tumour	Normal	
	Breast cases		Normai	00
Group I - On	Case1	0	2+	AL ST
Glitazones	Case2	0	2+	1000
	Case3	2+	NA	
	Case4	0	2+	15400
Group II - On	Case5	2+	3+	
other	Case6	1+	2+	600
antidiabetics	Case7	2+	3+	1
	Case8	2+	2+	3 10 10
	Case9	2+	1+	Set 2
	Case10	2+	2+	100
Group III -	Case11	2+	2+	0
Non diabetics	Case12	2+	2+	
	Case13	3+	2+	A Star
	Case14	2+	2+	The P
	Case15	2+	2+	
	Case16	2+	2+	

MnSOD expression

Synthetic glitazones achieve the same effects of downregulating MnSOD in vitro and in vivo.

Human MnSOD is down-regulated by PPARγ activation

- 2) PPARγ-dependent
- 3) Increase 0_2^{-1} levels

Can down-regulation of MnSOD account for increased ROS levels?

Kaplan-Meier curve showing survival differences of MnSOD expression in patients with stage 1 and 2 breast cancer

Sensitization in Breast Tumor Cells

Suppression of MnSOD increases chemosensitivity of breast tumor cells to anti-cancer drugs.

Normal Breast Epithelial Cells

Normal breast cells are not affected by suppression of MnSOD.

Oxidation Therapy

• Cancer cells are generally under reactive oxygen species (ROS) stress (Heliman et al., 2004; Zhou et al., 2003)

DOC and DOX: ROS-inducing anticancer drugs

• Reported to increase the level of intracellular ROS (Hur GC et al., 2003, Wang J et al., 2008)

MDA-MB-231

Sensitization in Breast Tumor Cells

Combination treatment sensitizes breast cancer cells and sensitization can be blocked by overexpression of MnSOD.

Increased ROS Levels in Breast Tumor Cells

Combination treatment increases ROS levels in breast tumor cells and ROS increase can be blocked by overexpression of MnSOD.

Cell Viability of Normal Breast Epithelial Cells

Combination treatment does not affect normal breast cells

ROS Levels in Normal Breast Epithelial Cells

Combination treatment is specific to breast tumor cells

Acknowledgements

Most Priced Possession

- Ms. Diana Hay Hui Sin
- Ms. Chen Luxi
- Ms. Loo Ser Yue
- Ms. Goh Jen Nee (Research Asst.)
- Mr. Rohit Surana
- Dr. Eun Myoung Shin (Research Fellow)

Shazib Pervaiz, Physiology, NUS, Singapore
Marie Veronique Clement, Biochemistry, NUS, Singapore
Manuel Salto-Tellez, Ireland
Goh Boon Cher, NUH, Singapore
Joo-In Park, Dong-A University, Busan, S. Korea